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Istract - This work deals with structural damage detection using synthetic displacement measurements as exper-
ental data to be used by two different methodologies: the conjugate gradient method with the adjoint equation 

an artificial neural network. Both techniques have been employed in order to place and quantify the time-
-iable damage in a simple truss structure. Estimation errors have been reported ia order to make possible a 
mparison of the two methodologies. 

INTRODUCTION 
msiderable research and effort over the last few decades has taken place in the field of system identification 
Dblem. for different reasons. One of the most interesting applications involves the monitoring of structural 
egrity through the identification of damage. It is well known that damage modifies the dynamic response of 
structure and, at the same Ume, that changes in its behavior may be associated with the decay of the system's 
Dchanical properties [16]. 

The damage identification problem is displayed as an inverse vibration problem, since the damage evaluation 
achieved through the determination of the stiffness coefficient variation, or the stiffness coefficient by itself. 
ie inverse problem solution is generally unstable. therefore, small perturbations in the input data, like random 
rors inherent to the measurements used in the analysis, can cause large oscillations on the solution. In general 
e inverse problem, i.e. the ill-posed problem, is presented as a well-posed functional form, whose solution is 
itained through an optimization procedure. 

Based em these considerations, several works have examined lhe use of measured variations in dynamic be-
ivior to detect structural damage. A variety of experimental, numerical and analytical techniques has already 
[en proposed to solve the damage identification problem, and have received notable attention due to its practical 
iplications [7]. These methods are usually classified under severa] categories, such as frequency and time domain 
.ethods, parametric and non-parametric models, deterministic and stochastic approaches [6, 4]. 

Among the classical methods, recently the use of the conjugate gradient method with the adjoint equation [1, 
2], or Variational Approach, which has been used successfully in thermal sciences [6]. has also been presented as 
satisfactory choice to face the damage identification problem. 

Some works regarding the use of the variational approach in inverse vibration problems can be found in the 
terature, for instance, Huang [10, 11] hos estimated the time-dependent stiffness coefficients considering spring-
[ass systems with one and multiple degrees of freedom. Also, Castello and Rochinha [5] have identified the elastic 
id damping parameters of a bar-like structure using the adjoint equation approach. On the other hand, among the 
1-classical stochastic methods, the Artificial Neural Networks (ANNs) represent a powerful choice for solving 
n trivial problems. The fault tolerance, generalization capabilities of ANN's make them attractive to approach 
erse problems. 
Works regarding the use of ANN methods to solve the damage identification problem have beca reported in 
.iterature employing different neural network models, either multi-layer perceptrons [17, 3, 18] or radial basis 

_ - tions [2. 13]. In this work both lhe Variational approach and ANN method have been used to estirnate lhe 
te-dependent stiffness of a simple truss structure. The estimation errors concerning both methodologies have 

ren employed in order to evaluate the estimation quality of the two different techniques. 

THE DIRECT PROBLEM 
' - N-DOF damped system considered in this work is presented in Figure 1 and the mathematical formulation of 

s f rced vibration systems is given by 

1\45I(t) + C Sr(t) + K(t)x(t) = f(t), 	 (1) 



1 

3 	 F2 

Figure 1: The truss structure considered in this work. 
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with initial conditions 
x(0) = xo and ic(0) = Sc o 	 (2) 

In eqn. (1) M represents the system mass matrix, K(t) the time-dependent stiffness matrix, C the damping 
matrix, f (t) the externai forces vector, and x(t) the displacements vector. There exists no analytical solution for 
eqns. (1)-(2) for any arbitrary functions of K(t), C. and f (0. For this reason the numerical solution with the 
Newmark method [15] is applied to solve the direct problem. This problem calculates the system displacement 
vector x(t), if initial conditions, system parameters M, K ( t) and C, and the time-dependent externai forces f (t) 
are known. 

3. THE VARIATIONAL APPROACH 
The goal of this work is to recover the unknown time-dependent stiffness coefficients from the synthetic system 
displacement measurements of a truss structure with N-DOF (Figure 1). The inverse analysis with the conjugate 
gradient method involves the following steps [1, 12]: (i) the solution of the direct problem: (ii) the solution of the 
sensitivity problem; (iii) the solution of the adjoint problem and the gradient equation; (iv) the conjugate gradient 
method of minimization; (v) the stopping criteria. Next, a brief description of basic procedures involved in each of 
these steps is presented. 

3.1. The Sensitivity ProbIem 
This problem involves N unknown time-dependem stiffness parameters, which constitute the elements of the stiff-
ness matriz K t) = f [/C(t)j. where 7C(t) KN(t)] and the parameters i = 1, ....N represent 
the structural stiffness parameters of the finite element; for instance for a bar-like structure K,= EA/L € . where 
E is the Young's module, A is the cross section arca and L, is the length of the finite element. In order to derive 
the sensitivity problem for each unknown function K,(t), each unknown stiffness parameter should be perturbed 
ata time. Supposing that K(t) is perturbed by a small amount AlC,(t) (5(i — j), where the Sb) is the Dirac-delta 
function and j = 1. .... N. results in a small change in displacements by the amounts of (t). The sensitivity 
problem is obtained by replacing in the direct problem, Eqs. (1)-(2), K(t) by e (t) ,(t - j), x(t) 
by x(t) 4- Ax zi  (t). and by subtracting the original direct problem from the resulting expression, and also by ne-
glecting the second-order terms. Therefore, N sensitivity problems have been obtained, since j = 1, , N, i.e., 
a different sensitivity problem for each perturbed stiffness parameter. The sensitivity problem is defined by the 
following system of differential equations 

MAZi (0± C(t)AX,(t) -f- K(t) Axi  (t) = AKi (t)x(t), 	 (3) 

where j = 1, . . N and with initial conditions 

and Aici  (0) = . 	 (4) 

3.2. The Adjoint Problem and the Gradient Equation 
The inverse problem is to be solved as an optimization problem requiring that the unknown function 7C(t) minimize 
the functional „f 1C(t)I defined by 

J[1C(t)] = 	[x(t) —:x(t) — x"P(2 1 )] dt, 	 (5) 
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where t f is the final time, x(t) and x"P( t) are the computed and measured displacements at time t, respectively. 
For solving the minimization problem (5), the Lagrange multiplier vector X(t) is usually used to associate the 
constraints (1) to the functional form 

tf 	 tf 

r1C1  — 	 [ x — x" P»x — x"P] dt 	XT  {M21- Ck 	— f} dt . 
o 	 o 

(6) 

Computing the differential of the functional form and knowing that the coefficient of Ax shall vanish, for conve-
nience the vector .X has been chosen to be Se solution of the adjoint problem: 

M Â(t) — C(t) Á(t) -r K(t) A(t) = 2 :x"P(t)— x(t)1  . 	 (7) 

with final conditions 
A(tf ) = 0 and Á(tf) = O . 	 (8) 

Applying Se variational theory [12], the left term is employed to determine the gradient J [IC1, which is g ven by 

t f  
it  {1C1 = f ÀT  6R3  X dt 	 (9) 

o 

where 61-C]  refers to the j th  perturbed stiffness matriz, i.e. AÍ( )  = 0[AK78K ]  (t). 

3.3. The Conjugate Gradient Method of Minimization 
The iterative procedure based on the conjugate gradient method is used for the estimation of the unknown stiffness 
parameters 1C given in the forni [1, 12]: 

1C+1  = 1C —13n  P", TI = O. 1, 2 	 

pn jIn „yn pn-1 ,  with 70_Q 	 (10) 

where 0 °.  is the step size vector. Pn is Se direction of descent vector and -yr' is the conjugate coefficient vector. 
The step size vector ff 2 , appearing in eqn. (10), is deterrnined by minimizing the functional vector .1,1C" +1; given 
by eqn. (5) with respect to 0 ° . For the stopping criterion the discrepancy principie has been taken as 

jf1ca+1 < c2, 	 ( I I ) 

where €2  = Ncr2t f, and a is the standard deviation of Se measurements errors. 

4. MULTILAYER PERCEPTRON NEURAL NETWORK 
Artificial Neural Networks (ANN) have become important tools for information processing [9]. Much research has 
been conducted in pursuing new neural network models and adapting the existing ones to solve real life problems, 
such as those in engineering [9]. ANNs are made of arrangements of processing elements called neurons. The 
artificial neuron model basically consists of a linear combiner followed by an activation function (Figure 2(a)), 
given by: 

Y k = ,P ( E wk, .E., ± bk . 
J =1 

n 
(12) 

where wk]  are the connections weights, bk is a threshold parameter, xl  is the input vector and yk is Lhe output of 
the Oh  neuron. 
Arrangements of such units form the ANNs that are characterized by: 

• Very simple neuron-like processing elements; 

• Weighted connections between the processing elements; 

• Highly parallel processing and distributed control; 

• Automatic learning, of internai representations 
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ANNs aim to explore the massively parallel network of simple elements ia order to yield a result in a very short 
time slice and, at the same time, with insensitivity to loss and failure of some of the elements of the network. These 
properties make artificial neural networks appropriate for application in paliem recognition, signal processing, 
image processing, financing, computer vision, engineering, etc. 

There exist different ANN architectures that are dependent upon the learning strategy adopted. This paper 
briefly describes the Multilayer Perceptron (MLP) with error backpropagation learning. Detailed introductions on 
ANNs can be found in [91 and [141. MLP with backpropagation learning algorithm, are feedforward networlcs 
composed of an input layer, an output layer, and a number of hidden layers, whose aim is to extract high order 
statistics from the input data [St Figure 2(b) depicts a multilayer neural network with a hidden layer. 

".) 

 

x, 

 

x„ 

(a) 
	

(b) 

Figure 2: (a) Single Neuron, (b) Multilayer Neural Network. 

Functions ,p(-) provide the activation for the neuron. Neural networks will solve nonlinear problems, if non-
linear activation functions are used for the hidden and/or the output layers. From severa] activation functions, the 
sigmoid are commonly used: 

logistic function : 

 

1 
— 

1 + exp(—av) 

bipolar function : 	51,'( i') = 1 
— exp( —av) 
 • 	 (13) 
1 exp( —ar) 

A feedforward network can transform input vectors of real values onto output vector of real values. The 
connections among the several neurons (Figure 2) have associated weights that are adjusted during the learning 
process, thus changing the performance of the network. Two distinct phases can be devised while using an ANN: 
the training phase (learning process) and the run phase (activation of the network). The training phase consists of 
adjusting lhe weights for the best performance of the network in establishing the mapping of many input/output 
vector pairs. Once trained, the weights are fixed and the network can be presented to new inputs for which it 
calcul ates the corresponding outputs, based on what it has learned. 

The error backpropagation training is a supervised learning algorithm that requires both input and output (de-
sired) data. Such pairs permit the calculation of the error of the network as the difference between the calculated 
output and the desired vector. The weight adjustments are conducted by backpropagation such error to the network, 
governed by a change rule. The weights are changed by an amount proportional tolhe error at that unit, times the 
output of the unit feeding the weight. Equation (14) shows the general weight correction according to the so-called 
delta rule 

Awki —• 5k 
	 (14) 

where, õk is the local gradient, Yj  is the input signal of neuron k. and n is the learning rate parameter that controls 
the strength of change. 

5. INVERSE PROBLEM SOLUTION BY ANN 
In this work a MLP Neural Network is employed to solve the problem of the estimation of the time-dependent 
stiffness coefficients of a truss structure (see Figure 1). This truss structure is composed by 4 bars and clamped at 
one end. The unknown transient stiffness coefficients have been assumed as: 

	

'EA' 	_E A sin  (ei  _21 ; 
Ki(t) = (T - b

1  

	

I-) 	
( Li) 	f 

( E A\ 	E A 	27r t 
(---) COS (C2 	; 

L2 	 L2 	 t f )  

E A )  
K3 (t) a) (7;  3 (-EtT A )cos (c3—irj2

tf 
, 

( E A\ 	( E A\ . 	27r t  
\L4) " V—L 1 ) 

5111 C4 	• tf )  

(15) 
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In order to give a good information to the neural network, a history of 15 time steps is used. resulting in 60 
inputs and 4 desired output units. For this reason, stiffness coefficients have been estimated from the fifteenth 
time step. Although different neural networks topologies have been used, varying lhe number of hidden layers 
and the number of neurons in each layer, one hidden layer with 10 neurons was sufficient to obtain good results. 
The sigmoid activation function has been used in both hidden and output layers. Besides that, some numerical 
experiments have been developed using a different model of neural network, lhe Radial Basis Function (RBF). 
The estimation results obtained with lhe RBF model were worst than the ones obtained with the MLP and for this 
reason they are not presented in this work. 

5.1. Training 
The training set is built up from the solution of the direct model (eqns. (1) and (2)) assuming severa] different 
variations of lhe stiffness functions (eqns. (15)), generating the respective displacements. For the training phase lhe 
desired output of the ANN are lhe stiffness coefficients, while the input of the ANN are lhe corresponding measured 
displacements. For each assumed stiffness coefficient function the corresponding displacement is computed to 
adjust the weight and bias which will be used ia the activation phase. The training set was composed of 32 different 
functions for lhe stiffness coefficients. This functions are defined trough the equations (15) where different values 
for the parameters a, 6 2  and ri , for i = 1, .... 4, have been assumed. 

6. NUMERICAL RESULTS 
In this work the unknown time-dependent stiffness coefficients are estimated employing two different methodolo-
gies: a deterministic one represented by the variational approach, and a stochastic one represented by the artificial 
neural networks. The estimation results are employed to produce both qualitative and quantitative comparison 
considering a 4-bar truss structure, clamped at one (see Figure 1). 

The referred truss structure is composed by aluminum bars (p = 2700 kg/in 3  and E = 70 GPa with a 
square cross section area Á = 25.0 x 10 -4  m2 , where the nondiagonal elements are 1.0 rn long. This numerical 
example has used the finite element method to calculate the mass and the stiffness matrices that appear in eqn. (1); 
note that for this example one finite element for each bar has been used. As far as the damping matrix is concerned, 
it has been assumed that it is proportional to the undamaged stiffness matrix C = 5.0 x 10 5  K. Furthermore, 
it has been assumed an extemal force of intensity f (t) = 1000.0 N applied at the vibrating nodes in the positive 
diagonal direction constant with time and the following initial conditions have been adopted x(0) — 0 and i(0) 
O. Numerical simulations have been performed assuming the final time as tf = 5.0 x 10 -2  s and a time step 

= 5.0 X 10 -4  s. 
The experimental data, i.e the displacements of lhe nodes of the structure along x and y directions, have been 

simulated by adding a random perturbation to the exact solution of the direct problem, such that 

x"P(t) = .r(t) [1 -E a TZ.] 	 (16) 

where a is lhe standard deviation of lhe noise and 7Z is a random variable taken from a Gaussian distribution, with 
zero mean and unit variance. For numerical purposes, lhe estimation results have been obtained considering two 
different cases: noiseless (o-  = O) and noisy experimental data (a = 1%). 

In order to evaluate the accuracy of lhe adopted methodologies. the error between lhe estimated stiffness 
coefficients (ie) and the corresponding exact values _exact) is defined by 

E(k)
[1K„y„ (t)  -1e(t) 

1Ceract(t) 

where II  • 2 is lhe 2-norm. Also. lhe average error is computed considering lhe recovered functions for each 
stiffness coefficient, where M represents lhe number of functions to be evaluated: 

AÍ 

EVC3 ) EVej) rnean  =- -7  E E(k,), where j = 1 	4. 	 ( 18 
A  2=1 

lhe standard deviation of lhe estimation errors for lhe recovered stiffness coefficients has been calculated using 
•he expression 

At 
EUe.A std 	— 	((E()2E(Cj))

2 
	where 	 (19) 

\I  AL 2=1 

Table 1 presents the parameters a i , ly and c i  (i 	1 	4) which define, through the equations in (15), lhe 10 
.unctions to be evaluated. 

2 

(17) 
2 
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Table 1: Parameters used in the generalization functions. 

Funct on Case a1 a2 a3 a4 b1 b2 63 64 e1 e2 e3 e4 

0.9 0.9 0.8 0.9 0.05 0.03 0.07 0.07 

4
-  

C
J  

■—
■ 

b
i

Ln
Ln

Ln
b
b

Ln
in

b
in

  

0.75 0.75 0.8 0.9 0.05 0.03 0.02 0.07 
0.9 0.75 0.9 0.9 0.05 0.03 0.03 0.03 
0.9 0.9 0.8 0.9 0.05 0.05 0.05 0.07 

0.75 0.75 0.75 0.9 0.05 0.03 0.03 0.01 

‘0
 0.9 0.75 0.8 0.95 0.05 0.03 0.03 0.02 

kr
) 

r‘i  t•J
  

0.9 0.75 0.8 0.9 0.05 0.03 0.03 0.02 
0.9 0.75 0.8 0.9 0.01 0.03 0.03 0.07 
0.9 0.75 0.8 0.9 0.05 0.03 0.03 0.07 

0.75 0.95 0.8 0.9 0.05 0.02 0.03 0.07 

In order to obtain a better comparison between the methodologies, the estimation of the stiffness coefficients for 
each test function presented in Table 1 has been computed using 50 realizations for different experimental noisy 
data. Employing these estimation results, average errors and standard deviation of these errors are computed. 
Statistical information are shown ia tables of next Sections, where error E(.)„„„„ is given by eqn. (18). The 
average of estimations of function type 9 (see Table 1) - average stiffness - is depicted graphically in Sections 
6.1 and 6.2, using 50 different experimental noisy data, for both methods (the Nariational approach and the neural 
network). 

6.1. Variational Approach Results 
The variational approach is an iterative procedure based on the conjugate gradient method for which the undamaged 
configuration has been adopted as the initial guess. It should be noticed that the computed solutions for K, near 
the initial and final times, are deviated from its correct values because the gradient J" LICt vanishes for t = O and 
t = t f since x(0) = O and ..Mt f = 0. For this reason both the first and last time steps have been neglected. 

Table 2: Variational Approach - Individual Average Error for noisy data. 

Function Case EUCOntean E( 1C2)mean E(K3)mean E( 1C4)rnean 

e
l 	

en
 	

r--
 0

0
  c,

 2
 

0.0066 0.1768 0.0684 0.0007 
0.0352 0.1430 0.0389 0.0019 
0.0080 0.1644 0.0976 0.0008 
0.0062 0.1826 0.0569 0.0006 
0.0326 0.1624 0.0248 0.0024 
0.0062 0.1278 0.0451 0.0006 
0.0084 0.1685 0.0406 0.0009 
0.0342 0.1221 0.0437 0.0012 
0.0184 0.1101 0.0480 0.0008 
0.0084 0.1730 0.0492 0.0010 

Tables 2 and 3 present lhe average error, defined by eqn. (18), and the standard deviation of the error, defined 
by eqn. (19), respectively. Error values are small (1C 2  - 0(10 -1 ) and the others /C, 0(10 -2 )), denoting a good 
performance of the method for ali cases studied. It can be noted that the error for the same stiffness coefficient has 
the same magnitude for each case. Small values found for the standard deviation imply that the estimation will be 
a good one, because the errors are systematically small. 

Figures 3 and 4 present a qualitative comparison between the estimated stiffness coefficients when noiseless and 
noisy experimental data are used, respectively, by using the variational approach. In the noiseless case, a perfect 
reconstruction is performed. However, the method shows its sensibility related to noise, where some oscillations 
appear in the inverse solution, particularly it is pointed out in the first moments for the 1C1t 
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Table 3: Variational Approach - Individual Standard Deviation for noisy data. 

li FtlaCt1011 Case E 0 C1) rne an E( 1C2)mean E(ICAmean E (learnean 

re
l 	

k
r )
 
‘D

 N
C

O
 	

2
  

0.0016 0.0623 0.0184 0.0002 

0.0344 0.0274 0.0101 0.0004 

0.0028 0.0393 0.0250 0.0002 

0.0015 0.0546 0.0130 0.0002 

0.0047 0.0329 0.0044 0.0004 

0.0017 0.0265 0.0105 0.0002 

0.0020 0.0337 0.0110 0.0002 

0.0118 0.0277 0.0132 0.0003 

0.0083 0.0257 0.0125 0.0001 

0.0016 0.0372 0.0121 0.0002 

01005 	001 	0 615 	002 	0-025 	003 	0 035 	004 	0 645 
	

005 
Time 

ligure 3: Average of the estimated stiffness coefficients for test function 9 using the Variational Approach (noise-

ess data). 



SO4 
8 

6.2. ANN Results 
In the activation phase the inverse problem is solved by using the weights and bias obtained during the training 
phase. The robustness of the trained MLP is evaluated employing displacement functions not used in the training 
phase. 

Table 4: Artificial Neural Network results - Individual Average Error for noisy data. 

Function Case E(..-/- 1)7nean E (C2)mean E (1C3)mean EUelknean 

^
 	

in
 	

ir
)
 1/4.0

  
N

  
o
o
 cri O

  

0.0099 0.0535 0.0021 0.0019 
0.0256 0.0130 0.0020 0.0060 
0.0070 0.0135 0.0172 0.0018 
0.0101 0.0553 0.0022 0.0019 
0.0246 0.0194 0.0012 0.0021 
0.0093 0.0167 0.0024 0.0066 
0.0076 0.0160 0.0060 0.0014 
0.0065 0.0173 0.0036 0.0047 
0.0089 0.0155 0.0019 0.0014 
0.0211 0.0406 0.0017 0.0025 

Table 5: Artificial neural network - Individual Standard Deviation for noisy data. 

Function Case E (-1(  nmean E (IÉ'2) rnearz E (K3) r a e an E (k. 4)mearz 

^
r
i
  o

n
 	

0
0
 C

N
  

0.0009 0.0150 0.0004 0.0003 
0.0014 0.0034 0.0002 0.0005 
0.0008 0.0033 0.0012 0.0003 
0.0010 0.0146 0.0003 0.0004 
0.0014 0.0054 0.0002 0.0003 
0.0008 0.0048 0.0003 0.0009 
0.0008 0.0052 0.0006 0.0003 
0.0009 0.0063 0.0004 0.0005 
0.0008 

3e. 

 

0.0044 0.0003 0.0003 
0.0008 0.0109 0.0003 0.0004 
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Figure 5: Average of the estimated stiffness coefficients for the test function 9 using the Neural Network technique 
(noiseless data). 

The generalization capacity of the MLP is verified considering 10 different functions defined by eqns. (15) 
where parameters a, b, and w5 . for i 1. 2, 3, 4. are presented in Table 1. 

Tables 4 and 5 show the average error, defined by eqn. (18), and the standard deviation of the error, defined by 
eqn. (19), respectively. The estimation using ANN presents small errors (1C < 0(10 -1 )). Therefore, the use of 
ANNs is also a good strategy for the estimation of the stiffness coefficient with time dependency. These estimations 
have a small standard deviatioffi smaller than those found for the variational method. 
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Figure 6: Average of the estimated stiffness coefficients for test function 9 using the Neural Network technique 
(I% of noise). 

Figures 5 and 6 present a qualitative comparison between the estimated stiffness coefficients when noiseless 
and noisy experimental data are used, respectively, by using the variational approach. 

The estimation by ANN of function type-9 is shown in Figures 5 and 6. Some oscillations in the reconstruction 
is found, even for the noiseless case. However, oscillations present in the estimation considering the noisy case, 
are smaller than those seen in the inverse solution obtained using the variational approach. 

7. CONCLUSIONS 
The inverse vibration problem of estimating the unknown stiffness depending on time (damage identification with 
time dependency) has been addressed using two different approaches, where a simple truss was used as a test 
example. II should be pointed out that this example is more difficult than a spring-mass system used in a previous 
work [17]. Several stiffness coefficients are employed to evaluate the methods. 

Both strategies showed a good performance, presenting small errors and standard deviations. Table 6 shows 
the average obtained from the average errors of the 10 test functions studied, previously presented in Tables 2 and 
4. For both methods, the highest error is found in the estimation of the 1C2 coefficient, whilst the smallest error is 
found in the estimation of the 1C4 coefficient. The estimation using ANN is better for almost all stiffness, only for 
the stiffness-4 Se variational approach presents a small error. Similar behaviour is found related to the standard 
deviation: Se ANN presents smaller standard deviation for 1C, (i = 1. 2, 3). and the variational approach has a 
smaller standard deviation for 

Table 6: Methodologies Comparison - Individual Average Error for ali the test functions (noisy data). 

methodoiogy 	rEoci)mean E ( 1C2)rnean E (1e3)rnean E(1e4)mean 

Variational Approach 0.0164 0.1531 0.0513 0.0011 
ANN Technique 0.0131 0.0261 0.0040 0.0030 

Concerning the computational time requested by the methodologies used in this work, it should be pointed 
out that the ANN have two different phases: training and activation. The training phase usually is very CPU time 
consuming, and for the present problem it is requiring some hours. However, this step is done only one time. After 
Se training, the activation phase is very fast. usually takes less than one second. The latter phase represents the 
real inverse problem solution. Regarding the variational approach, the CPU-time was around few seconds. Ali 
computational simulations have been performed in a personal computer Vv ith a Pentium IV - 1.6 GHz processor. 

Oscillations verified in the inverse solution using an ANN for the noiseless case are also found for ali test func-
tions (not shown). However, the error in the reconstruction using an ANN is smaller than those found employing 
the variational approach for the noisy data. 

The mathematical derivation of the equations for the use in the variational approach is the biggest challenge 
for this methodology. For ANNs, the difficulty lies in the selection of the appropriate data set for training. 

The RBF model has also been applied in the estimation of time-dependent stiffness coefficients, however good 
estimations have not been achieved, denoting that other RBF topologies should be explored in future works. 
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